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ELASTIC-PLASTIC RESPONSE OF POROUS METALS
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Abstract-Special constitutive equations are presented to describe the elastic-plastic response of
porous metals. Employing a simple yield function, the theory is compared with experimental results
for porous tungsten. Responses under hydrostatic compression and uniaxial strain compression are
considered.

1. INTRODUCTION

Considerable effort has been devoted to the development of constitutive theories for the
mechanical response of porous solids undergoing elastic-plastic deformation. This trend is
apparent in such research areas as powder metallurgy, geotechnical engineering, shock
wave physics, and ceramic engineering.

The volumetric deformation ofporous materials has been described by various methods
ranging from simple phenomenological modeling to micromechanical modeling. The pore
collapse models which use spherical pores may be at this time the most powerful and
convenient (Torre, 1948; Mackenzie, 1950; Carroll and Holt, 1972, 1973; Carroll and Kim,
1984; Kim and Carroll, 1987).

The response of porous materials under general three-dimensional loading conditions
is quite complicated and may exhibit strong coupling between volumetric and deviatoric
effects. Johnson and Green (1976) discussed some of these effects, such as shear enhanced
compaction (i.e. that the role ofshear stress is to enhance the amount of volume compaction
as compared to the purely hydrostatic behavior). Curran and Carroll (1979) carried out
the spherical pore model calculations by using a finite element method to account for the
deviatoric effects. Their numerical solutions showed good agreement with experimental
data of porous metals and porous rocks.

An alternative approach to the development of constitutive theories for porous solids
is macroscopic elastoplasticity. In this approach a porous solid is treated as a homogeneous
continuum with a porosity parameter 4J which is related to plastic strain.

Several yield functions for porous solids have been proposed. Green (1972), Gurson
(1977), and de Boer and Kowalski (1983) obtained yield functions which are based on
approximate analytical solutions for a rigid-perfectly plastic hollow sphere. Kuhn and
Downey (1971) and Shima and Oyane (1976) proposed empirical yield functions.

In this paper special constitutive equations are presented for elastic-plastic deformation
of porous metals. The elastic deformation is described by the generalized Hooke's law with
the effective elastic moduli of a porous metal. The elastic-plastic deformation is described
by an empirical yield function for a porous metal and a constitutive theory which has been
developed by Naghdi and co-workers (Green and Naghdi, 1965, 1966; Naghdi and Trapp,
1975a, b; Casey and Naghdi, 1981, 1984a, b). A strain space formulation is employed in
this paper because there is some ambiguity in a stress space formulation; for instance, the
conditions f = 0 and 1 < 0 correspond both to unloading and softening during loading
(Casey and Naghdi, 1983). In any region of hardening, the loading conditions of the stress
space and strain space formulations imply one another. However, in regions of softening
and perfectly plastic behavior, the conditions in the two formulations do not imply one
another. The yield function presented in this paper has a simpler form and gives a better
agreement for real porous metals than those proposd by Green (1972) and by Gurson
(1977).
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Employing a yield function for porous metals with the normality flow rule,t the theory
is compared with experimental data (Shipman et al., 1975) for porous tungsten under
hydrostatic compression and uniaxial strain compression. A special yield function used in
this paper, in which the porosity is the only hardening parameter, gave reasonably good
agreement for experimental data of a real porous metal in small deformation. It is known,
however, that strain hardening ofa porous solid results not only from the change ofporosity
but also from the strain hardening of the matrix material. The effect of strain hardening of
matrix material will be included in the· future work.

2. BASIC EQUATIONS

The basic equations of a rate-independent constitutive theory presented by Casey and
Naghdi (1981, 1984a) and by Carroll (1987) are summarized here. It is assumed that the
stress tensort SKL is a function ofthe strain tensor eKL and a symmetric second-order plastic
strain tensor eh

(1)

and that, for fixed valus of eh, eqn (1) can be inverted to give

(2)

It is also assumed that there exists a loading function g in strain space such that for
each value of eh

(3)

defines an open region Iff of six-dimensional strain space (called the elastic region), with its
boundary olff (called the yield surface). States (eKL' eh) with g < 0 are elastic and with
g = 0 are elastic-plastic. The function g, defined by-.

A og.
g =-:3- eKL

ueKL
(4)

affgrds strain space criteria of unloading (g < 0), neutral loading (g = 0), and loading
(g> 0) from a plastic state.

With the use of eqns (2) and (3), one obtains a corresponding load function f in stress
space, so that

(5)

This allows an elastic region g : f < 0 and a yield surface og :f = 0 in stress space to be
defined. The function Jgiven by

A of.
f=-:3- SKL

USKL
(6)

enables hardening, softening, and perfectly plastic behavior to be defined (Casey and
Naghdi, 1981). As mentioned earlier, loading is defined by the condition g = 0, g> 0 in
strain space formulation. Strain hardening behavior of a material is characterized during
loading by the sign of the function <II = JIB, so that the scalar function <II may be positive

tCarroll and Cannan (1985) carried out a check on the assumption of normality for porous solids using a
finite element hollow sphere model. The assumption was plausible, at least for uniaxial strain and biaxial plane
strain problems.

t A distinction between the Piola-Kirchhoff stress tensor or either of the Cauchy stress tensors is not
necessary when only a small deformation is being considered.
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(if the material is hardening), zero (if the material is behaving perfectly plastically), or
negative (if the material is softening). It is noteworthy that the quotient!/g is independent
of rates, since 1 involves the time rate of the stress tensor and 9 the time rate of the strain
tensor. It is also shown that (Casey and Naghdi, 1981), while during loading the yield
surface in strain space is always moving outwards locally (g = 0, 9 > 0), the corresponding
yield surface in stress space may concurrently be moving outwards (f = 0,1 > 0), inwards
(f = 0,1 < 0), or may be stationary (f = 0, ! = 0) depending on whether the material is
hardening, softening, or exhibiting perfectly plastic behavior. The scalar function «> also
satisfiest

where

(7)

r+A > o. (8)

For the present purpose, it is sufficient to consider a special case of eqn (1), i.e.

(9)

where CCKLMN is the constant fourth-order elastic modulus tensor. Then, the constitutive
equations for the rate of plastic strain eh expressed as (see the development between
eqns (36)-(42) in Casey and Naghdi (1981))

. 9 af
eh=r A-a-'+ SKL

(10)

3. SPECIAL CONSTITUTIVE EQUATIONS

It is convenient to decompose various tensors into their spherical and deviatoric parts.
Thus, one can write

7:KL = SKL -SC)KL, YKL = eKL -e()KL, Yh = eh -€P()KL

S = 1SKK, e = 1eKK, eP = 1eh. (11)

It is assumed that the matrix compressibility is negligible. The stress response function
(9) is specified by the generalized Hooke's law

(12)

where Jl and k are the effective shear modulus and the effective bulk modulus for a porous
metal, respectively. Since the matrix compressibility is negligible, the measure of the porosity
1J (= Vp/V) is given by (Carroll, 1980)

1J = 1-(l-1Jo) exp (v) (13)

where V and Vpdenote the total volume and the pore volume, respectively, v (= -eKK) is
the compressive volume strain, and 1Jo the initial porosity. From the assumed smallness of
strain porosity, eqn (13) can also be approximated by

1J = l-(1-1Jo)(l+v).

One now considers a special loading function of the form
tSee eqn (4.13) in Casey and Naghdi (1984b).

SAS 24: 9-F

(14)
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f = h'KL't'KL +O(¢SZ--Hl-4>YY;

9 = 2JlZ(YKL -Y~L)(YKL -Y~L) +0(4){3k(e-~)} Z-1(1-4»n Y; (15)

where 0( and n are constants and Ys is the initial yield strength of the solid material. In view
of eqns (13) and (2), 4> is a function of SKL and eh in eqn (15)1 and eKL in eqn (15h
Equation (15)z is obtained from eqn (15) I with the use ofeqns (12). As the porosity becomes
smaller, the contribution of mean normal stress becomes smaller and that of the yield
strength becomes larger. The yield functions for porous solids which have been proposed
by other researchers also have similar structures. If the material does not exhibit a significant
hardening in small deformation, loading function (15) I in which the porosity is the only
hardening parameter may be a reasonable one.

Use of eqns (8) and (15) gives

8~~L = 2Jl't'KL +[ 20(k4>s,+ 0«(1- 4>)sZ +i (1- 4>Y Y; ] 15KL

r = - {20(4)S+ 0«(1 ;4» SZ + 3
n
k (l-4>Y Y; }{O(sZ(1-4»+ i(1-4>YY;}

{
- 0«(1- 4» -z n n z}

A = 2Jl't'KL 't'KL + 20(4)s+ k S + 3k (1- 4» Y s

x {20(k4>S+0«(1-4»SZ+ i(1-4>YY;}. (16)

4. SPECIAL LOADING CONDITIONS

4.1. Hydrostatic compression
Hydrostatic compression of a porous metal by external pressure is considered. Adopt­

ing the notations p = -s, v = -3e, and vP = -3~, one has 't'KL = YKL = Y~L = 0 from
spherical symmetry. Here p, v, and vP denote pressure, compressive volume strain, and
compressive plastic volume strain, respectively. Loading function (15) I now reduces to the
simplified form

and the constitutive equations, eqns (12) and (10), reduce to

p = k(v-vP)

and

(17)

(18)

(19)

4.2. Uniaxial strain compression
Uniaxial strain compression (a strain controlled test, i.e. ell "# 0 and en = e33 = 0) of

a porous metal is now considered. Assuming that Szz = S33 and e~z = e~3' one can write

and

't'KL = -HSII -szz)bKL , YKL = 1e ll bKL, Y~L = -He~ I -e~Z)bKL

S=-HSII+2szz), e=-kell> ~=-He~I+2e~z) (20)
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where
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(21)

-~ ~].
o -1

(22)

Use of eqns (20) gives loading function (15) I in the form

f = h2+cupp2--l(1-cPtY;

and the constitutive equations, eqns (12) and (10), reduce to

(23)

(24)

and

e\\ = [4,uf+ 6(XcPkp+ 3(X(1- cP)p2 +n(l- cPt Y;{2f+ 2(XcPp+ ~ (1-cP)p2

+ 3
n
k (1- cPt Y;Jell/[12,uf2+ l8(XcPp[2(XcPkp+(X(1- cP)p2 +n(l- cPt Y;/3]]

e~2 = [4,ui' +6(XcPkp+ 3(X(1- cP )p2+ n(1- cPt Y;{ -f+2(XcPp+ ~ (1- cP)p2

+ ;k (1- cPt Y;Jell/[12,uf2+ 18(XcPp[2(XcPkp+(X(1- cP)p2 +n(1- cP)n Y; 13]]

(25)

where

p= -p=(sll+2s22 )/3; f= -,=SII-S22' (26)

In eqns (26), p and, (= -J(hKL'KL)), respectively, denote compressive mean normal
stress and deviatoric stress.

5. COMPARISON WITH EXPERIMENTAL DATA

The constitutive theory for porous metals, developed in previous sections, and the
experimental data ofporous tungsten obtained by Shipman et al. (1975), are now compared.
Parameters (X and n in yield function (15) I are first determined from the initial yield surface
of the experimental data (Shipman et al., 1975). A non-linear regression method, e.g.
BMDP statistical software (Jennrich, 1983) may be used to find the best estimate of
parameters (X and n. The average initial porosity of porous tungsten is cPo = 0.211 (Shipman
et al., 1975) and the initial yield strength of solid tungsten is Ys = 0.965 GPa (Metals
Handbook, 1984). The porosity cP = cPI at the initial yield in eqn (15)1 is obtained from the
spherical model analysis (Carroll, 1980). Thus

cPo
cPI = 1+(Ys/2,us)(1-cPo)

(27)

where Ysand ,us denote the initial yield strength and shear modulus of the solid material.t

t The value of YJ2jl, = 0.005 was used.
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Fig. 1. Comparison of the experimental data of the initial yield from various triaxial loading tests
for porous tungsten (Shipman et al., 1975) (data points) with the initial yield surface from eqn
(15), (solid curve), with ()( = 1.2, n = 1.9, and Y, = 0.965 GPa. The initial yield surfaces of Green

(dashed curve) and of Gurson (dash-dot curve) are also shown.

Figure 1 compares the experimental data (data points) of initial yield from various
loading conditions for porous tungsten, obtained by Shipman et al. (1975) with the initial
yield surface obtained from eqn (15) 1 (solid curve), with IX = 1.2 and n = 1.9 and the initial
yield surfaces of Green (dashed curve) and of Gurson (dash-dot curve). The yield functions
of Green (1972) and Gurson (1977) are written in the present notations respectively as

(28)

and

where

(29)

b(</J)
a(</J) = 2ln (</J); (30)

It is observed that the initial yield surface obtained from eqn (15) 1 gives a better agreement
for the experimental data of porous tungsten, compared to the initial yield surfaces ofGreen
(1972) and of Gurson (1977). The yield functions of Green (1972) and Gurson (1977) are
obtained from the hollow sphere model, with a rigid-perfectly plastic material. The hollow
sphere model, however, overestimates the compacting pressure in the elastic region and in
the small plastic region, because in these regions there still exist aspherical pores and flat
microcracks which are easier to deform than spherical pores (Schatz, 1976).

Figure 2 compares a theoretical hydrostatic compression curve for porous tungsten
with experimental data (Shipman et al., 1975). The theoretical curve is calculated using
eqns (18) and (19), with the material constants obtained in Fig. 1. The effective bulk
modulus k = 110 GPa is used by comparing theory and experiment in the elastic range of
the pressure vs volume strain data.

1.5

"c..
L:l 1.0r:i:.
f£ f/iii

~ 0.5
~

0(/
0 001 002 OIl) 004

Volume Strain, v
Fig. 2. Comparison of an experimental pressure vs volume strain curve (dashed curve) during
hydrostatic compression (Shipman et al., 1975) with the theoretical hydrostatic curve calculated
from eqns (18) and (19).
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Table I. Theoretical and experimental porosity during hydro­
static compression

943

P (GPa)

o
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.875
0.9
0.925
0.95
0.975
1.0

v

o
0.0016
0.0026
0.0033
0.0041
0.0051
0.0061
0.0072
0.0086
0.0098
0.0106
0.0113
0.0240
0.0312
0.0403

Experimental r/J

0.2107
0.2095
0.2089
0.2082
0.2076
0.2070
0.2064
0.2051
0.2038
0.2032
0.2026
0.2020
0.1916
0.1857
0.1776

Theoretical r/J

0.2107
0.2094
0.2086
0.2081
0.2075
0.2067
0.2059
0.2050
0.2039
0.2030
0.2023
0.2018
0.1918
0.1861
0.1789

to
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Fig. 3. Comparison of a theoretical uniaxial strain compression behavior (solid curve) with the
experimental data (.6.) from Shipman et ai. (1975) on the deviatoric stress vs mean normal stress

relation for porous tungsten. The initial yield surface is also shown (dashed curve).

15...-----------'---.,

003

-----

004

Axial Strain, ~

Fig. 4. Comparison of a theoretical uniaxial strain compression behavior (solid curve) with exper­
imental data (dashed curve) from Shipman et ai. (1975) on the axial stress vs axial strain relation

for porous tungsten.

Table I shows theoretical and experimental porosity for porous tungsen during hydro­
static compression. The agreement between theory and experiment for hydrostatic com­
pression is reasonably good.

Figure 3 compares a theoretical stress path (solid curve) of uniaxial strain compression
for porous tungsten with the experimental data (i:,) (Shipman et al., 1975). The initial yield
surface is also shown (dashed curve). The theoretical stress path is calculated using eqns
(24) and (25). The effective shear modulus j1 = 95 GPa is used by comparing theory and
experiment in the elastic range of the stress path. By using the effective elastic moduli k and
j1, which were chosen respectively from elastic regions of Figs 2 and 3, reasonably good
agreements were obtained between theoretical predictions and experimental data in plastic
regions of Figs 2 and 3. Moreover, Fig. 4 shows the predictive capabilities of theory by using
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Fig. 5. Strain hardening responses of porous tungsten for hydrostatic compression (dashed curve)
and uniaxial strain compression (solid curve). These curves are calculated using eqns (7) and (8).

material constants obtained in Figs 1-3. Figure 4 compares a theoretical axial stress vs axial
strain curve (solid curve) of uniaxial strain compression for porous tungsten and the
experimental data (dashed curve). The theoretical curve is calculated using eqns (24) and
(25). The agreement is good up to an axial strain of 0.03, but the predicted axial stress at
higher axial strains are lower than the measured values. It appears that the strain hardening
of porous tungsten at a higher stain level may be greater than that predicted by yield
function (15) \. Figure 5 shows strain hardening behaviors of porous tungsten. These curves
are calculated for hydrostatic compression (dashed curve) and uniaxial strain compression
(solid curve) by using eqns (7) and (8). It is observed that a porous metal exhibits strain
hardening (<I> > 0) during hydrostatic compression and uniaxial strain compression. The
change of porosity 11<jJ is negativet during compression and the change of the rate-inde­
pendent quotient 11<1> is positive when a material exhibits strain hardening. Numerical results
also show that i3<1>ji3<jJ is negative which means that a porous metal exhibits strain hardening
during hydrostatic compression and uniaxial strain compression.
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